THOMPSON\'S THEOREM FOR COMPACT OPERATORS AND DIAGONALS OF UNITARY OPERATORS
نویسندگان
چکیده
منابع مشابه
Unitary Invariants for Compact Operators
We describe in this note how the "boundary representation" technique introduced in [l ] leads to a complete classification of compact operators on Hubert spaces to unitary equivalence (Theorem 3), in terms of a sequence of invariants related to (and generalizing) the numerical range. These invariants are, we feel, vastly simpler than one might have anticipated in so general a situation. Full de...
متن کاملStructure Theorem for a -compact Operators
A contraction Tdefined on a complex Hilbert space is called Acompact if there exists a nonzero function/analytic in the open unit disc and continuous on the closed disc such that f( T) is a compact operator. In this paper, the factorization of / is used to obtain a structure theorem which describes the spectrum of T. Introduction. A bounded linear operator T on a complex Banach space X is calle...
متن کاملsome properties of fuzzy hilbert spaces and norm of operators
in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...
15 صفحه اولThe Spectral Theorem for Self-Adjoint and Unitary Operators
(1.1) (Au, v) = (u, A∗v), u, v ∈ H. We say A is self-adjoint if A = A∗. We say U ∈ L(H) is unitary if U∗ = U−1. More generally, if H is another Hilbert space, we say Φ ∈ L(H,H) is unitary provided Φ is one-to-one and onto, and (Φu, Φv)H = (u, v)H , for all u, v ∈ H. If dim H = n < ∞, each self-adjoint A ∈ L(H) has the property that H has an orthonormal basis of eigenvectors of A. The same holds...
متن کاملDiagonals of Self-adjoint Operators
The eigenvalues of a self-adjoint n×n matrix A can be put into a decreasing sequence λ = (λ1, . . . , λn), with repetitions according to multiplicity, and the diagonal of A is a point of R that bears some relation to λ. The Schur-Horn theorem characterizes that relation in terms of a system of linear inequalities. We prove an extension of the latter result for positive trace-class operators on ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indiana University Mathematics Journal
سال: 2018
ISSN: 0022-2518
DOI: 10.1512/iumj.2018.67.6291